Best Practices
Error Handling
Robust error handling strategies for AI applications to ensure reliability and user experience.
Error Handling
Robust error handling strategies for AI applications to ensure reliability and user experience.
🚧 Coming Soon
This page is currently under development. Check back soon for comprehensive error handling documentation.
What This Page Will Cover
- Common AI-specific errors and exceptions
- Error handling patterns and best practices
- Graceful degradation strategies
- User-friendly error messages
- Debugging and troubleshooting
Planned Sections
Common AI Errors
- API rate limits
- Token limits
- Model timeouts
- Invalid inputs
- Service outages
Error Handling Patterns
- Try-catch strategies
- Retry mechanisms
- Circuit breakers
- Fallback options
- Error propagation
Graceful Degradation
- Fallback models
- Cached responses
- Simplified outputs
- Manual overrides
- Progressive enhancement
User Experience
- Error message design
- Loading states
- Progress indicators
- Recovery options
- Help resources
Monitoring and Alerting
- Error tracking
- Alert configuration
- Log aggregation
- Performance metrics
- Incident response
Debugging Strategies
- Debug logging
- Error reproduction
- Root cause analysis
- Testing error paths
- Documentation
Navigation