Best Practices

Error Handling

Robust error handling strategies for AI applications to ensure reliability and user experience.

Error Handling

Robust error handling strategies for AI applications to ensure reliability and user experience.

🚧 Coming Soon

This page is currently under development. Check back soon for comprehensive error handling documentation.

What This Page Will Cover

  • Common AI-specific errors and exceptions
  • Error handling patterns and best practices
  • Graceful degradation strategies
  • User-friendly error messages
  • Debugging and troubleshooting

Planned Sections

Common AI Errors

  • API rate limits
  • Token limits
  • Model timeouts
  • Invalid inputs
  • Service outages

Error Handling Patterns

  • Try-catch strategies
  • Retry mechanisms
  • Circuit breakers
  • Fallback options
  • Error propagation

Graceful Degradation

  • Fallback models
  • Cached responses
  • Simplified outputs
  • Manual overrides
  • Progressive enhancement

User Experience

  • Error message design
  • Loading states
  • Progress indicators
  • Recovery options
  • Help resources

Monitoring and Alerting

  • Error tracking
  • Alert configuration
  • Log aggregation
  • Performance metrics
  • Incident response

Debugging Strategies

  • Debug logging
  • Error reproduction
  • Root cause analysis
  • Testing error paths
  • Documentation

Navigation